Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(33): 13191-13198, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35943777

RESUMO

Organic-inorganic hybrid metal-polyphenols as stable structural modules have gained extensive interest due to their diverse applications. However, titanium-oxo compounds (TOCs) with large molecular polyphenols have been less explored, and they were expected to be different from small polyphenols with isolated metal ions. Herein, 4-methyl-esculetin (Mesc), a catechol derivative, was selected to construct three TOCs, namely, [Ti17O24(Mesc)4(OiPr)16] (1), [Ti12O14(OiPr)18][Ti16O14(Mesc)12(OiPr)14] (2), and [Ti3O(Mesc)2(OAc)2(OiPr)4] (3). These compounds were structurally characterized. Photocurrent responses were evaluated using the compound-sensitized TiO2 electrodes. It was found that the current densities of 1-3 electrodes are in the order of 1 ≫ 3 > 2, which relates to the ligand-to-TiO core and ligand-to-ligand charge transfers (LMCT and LLCT, respectively). Density functional theory calculations showed that the lowest band gap of 1 originates from its LLCT. Compound 1 reacted with polyphenol tannin (TA) to form a fully transparent and robust gel (1-TA), and the gelation properties were investigated. Using the gel as a nano-TiO2 fixing agent, solar cell electrodes were prepared by a low-temperature wet method. The photocurrent responsive behavior of the 1-TA/TiO2 electrode was compared with that of the 1-sensitized traditional high-temperature-treated TiO2 electrode. Although the current density of the former is somewhat lower than that of the traditional electrode, the low-temperature wet preparation of the 1-TA/TiO2 electrode is more energy-efficient and sustainable.

2.
Inorg Chem ; 61(9): 4024-4032, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35179867

RESUMO

Photoelectrocatalysis (PEC) has shown great advantages in sustainable organic synthesis and wastewater treatment because the PEC process can minimize electron-hole recombination, thereby improving the photocatalytic performance. Here, we report a convenient procedure for preparing immobilized BiOX-TiO2 photoelectrocatalytic electrodes from a titanium-oxo compound (TOC)-modified carbon fiber cloth (CFC). Crystalline TOCs composed of Ti12 cations and bismuth halide anions, [Ti12O14(OiPr)18][Bi3Br11(THF)2] (1) and [Ti12O14(OiPr)18][Bi4I14(THF)2] (2), were grown on CFC. Taking advantage of the easy hydrolysis of the titanium-oxo cation and bismuth halide anion, we could easily transform these CFC-immobilized crystals into BiOX-TiO2/CFC (X = Br or I) photocatalysts, which facilitates recycling of the catalysts. The photocatalytic dye degradation test showed that the efficiency did not decrease obviously after 10 photocatalytic cycles. Using BiOX-TiO2-modified CFC as electrodes, electrocatalysis (EC), photocatalysis (PC), and PEC were examined. PEC showed an attractive synergistic effect of EC and PC. These TOC-modified CFCs would be potential candidates for catalytic electrodes for sustainable wastewater purification.

3.
Inorg Chem ; 60(16): 12255-12262, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34351141

RESUMO

Despite the numerous titanium-oxo clusters (TOCs) which have been reported, the nature of small clusters (nuclearity < 10) as model compounds showed large deviation from that of nanoscale TiO materials. Therefore, theoretical and experimental studies for large TOCs merit more attention. We recently prepared and crystallographically characterized a series of large TOCs: Ti11O15(OiPr)16(Cophen) (1), Ti11O15(OiPr)16(Mnphen) (2), Ti10O14(OEt)16(Mnphen)2 (3), and Ti10O14(OEt)16(Mnphphen)2 (4) (phen = 1,10-phenanthroline, phphen = 4,7-biphenyl-phen). These compounds are derivatives of a Ti12 parent cluster by replacing one or two of the five-coordinated titanium atoms of the Ti12 cluster with a transition metal M, Co(II) and Mn(II), that is chelated by a phen group. The effects of mono- and bis-substituted Mphen on the charge and structure of the clusters are discussed. Theoretical evaluation of the frontier orbitals of the clusters is carried out on the basis of the precisely defined crystal structures. Different from the dye molecule to TiO core charge transfer for the dye-modified TOCs, charge transfer in these clusters is from TiO/TiOM to phen/Mphen. The effects of different metal ions and the number of substituted Mphen moieties on the photocurrent properties are evaluated. The results will be of interest to research on cluster chemistry, especially on the TOC chemistry.

4.
Inorg Chem ; 60(13): 9589-9597, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34139843

RESUMO

Titanium oxides and bismuth halides or oxyhalides have been known to be excellent semiconductors with both excellent photocatalytic and photoelectric properties. The design of supersalts assembled by titanium-oxo clusters (TOCs) and bismuth iodide clusters is a hopeful strategy for exploring the chemistry and application of new titanium-oxo clusters. We report herein a series of unusual ionic TOCs with Ti12 oxo cluster cations and bismuth iodide anions, [Ti12O15(OiPr)17]3[Bi3I12] (Bi3), [Ti12O14(OiPr)18][Bi4I14(THF)2] (Bi4), and [Ti12O14(OiPr)18][Ti11BiO14(OiPr)17][Bi6I22] (Bi6). Single-crystal X-ray analysis revealed that the type and charge of the Ti12 clusters varied with the charges of different bismuth iodide clusters. Taking advantage of the easy hydrolysis of the TOCs and BiI clusters in water, we used these supersalt crystals as single-source precursors to prepare a p-n-type BiOI-TiO photocatalyst. The heterojunction materials were carefully characterized by powder X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, etc. The synergistic effect of the two components of BiOI and TiO on the photocatalytic degradation of RhB in water is demonstrated. This is a very convenient method for obtaining a p-n-type BiOI-TiO heterojuction photocatalyst by just placing the ground TOC crystals into water.

5.
Inorg Chem ; 60(12): 9132-9140, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34081433

RESUMO

Two dimensional (2D) hybrid perovskites have attracted a great deal of interest because of their appropriate photovoltaic efficiency and environmental stability. Although some 2D hybrid perovskites with sulfur-containing amines have been reported, the cation having the mercaptan group has not been well explored yet. In this work, cysteamine (Cya, HS(CH2)2NH2), a mercaptan-containing amine, was introduced into 2D hybrid perovskite. Two 2D lead iodides with different structures, (HCya)2PbI4 (1) and (HCya)7Pb4I15 (2), were isolated as a red low-temperature phase and a yellow high-temperature phase, respectively. X-ray single-crystal structural analysis showed that the red phase 1 is a single layered corner-shared perovskite and that the yellow phase 2 is a corner/edge-shared quasi-2D perovskite. A thermo-induced reversible 1 to 2 phase transition was found in this synthetic system. The configuration of HCya cation greatly influences the crystallization equilibrium, generating different structures of the lead halides. The single-crystal structure of 1 is discussed in comparison with that of (HAE)2PbI4 (AE = HO(CH2)2NH2), an analogue of 1. The different effects of OH and SH groups on the 2D frameworks are studied based on their hydrogen bonding properties. More remarkably, although the two perovskites have similar structures, the (HCya)2PbI4 (1) has an intrinsic water stability that is much more stable than (HAE)2PbI4, which should be attributed to the affinity of the SH group with lead on the surface of the lead halide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...